AI自動レジのための食器画像分割
食堂での精算作業の負荷軽減、効率向上、省力化に貢献するAIを活用した自動レジがあります。この実現のため、食器自動認識と分類の手法を開発した事例です。
AIを使って学習をさせるには、ラベル付けのデータセットが必要となりますが、手作業で画像から食器を分割する作業は工数が膨大となるため、自動化が求められています。
実験画像の例を示します。


Watershed に基づく、領域成長による画像分割手法を検討しました。食器と背景画像の間に明確な境界線を持つため、シード画素を特定し、画素同士の類似関係によって食器の領域成長で分割していくことができそうです。





次に、距離変換(Distance Transformation)によるシード画素の特定を行います。画像をモノクロに変換し、距離変換によって食器の領域の真ん中の画素値をシード画素として抽出します。





提案手法を異なる画像にも適用してみました。左が入力画像、右が手法を適用した結果です。




距離変換と領域成長の併用で、食器の自動分割手法が確立できました。使用後の汚れた食器のとき、性能は限定的ですが、シード画素の手動選択などによる改善が期待できます。
お問い合わせ
開発事例に興味がありましたら、お気軽にお問合せください。
下記お電話、または「お問い合わせ」からフォームにご記入ください。
株式会社ハイシンク創研 研究開発本部075-322-7088受付時間 9:00-18:00 [ 土・日・祝日除く ]
お問い合わせ